Partition into cliques for cubic graphs: Planar case, complexity and approximation
نویسندگان
چکیده
Given a graph G = (V, E) and a positive integer k, the PARTITION INTO CLIQUES (PIC) decision problem consists of deciding whether there exists a partition of V into k disjoint subsets V1, V2, . . . , Vk such that the subgraph induced by each part Vi is a complete subgraph (clique) of G. In this paper, we establish both the NP-completeness of PIC for planar cubic graphs and the Max SNP-hardness of PIC for cubic graphs. We present a deterministic polynomial time 4 -approximation algorithm for finding clique partitions in maximum degree three graphs. c © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Edge Clique Partition of K 4-Free and Planar Graphs
Edge k-Clique Partition (k-ECP) is the problem of dividing the edge set of an undirected graph into a set of at most k edgedisjoint cliques, where k ≥ 1 is an input parameter. The problem is NP-hard but in FPT. We propose several improved FPT algorithms for k-ECP on K4-free graphs, planar graphs, and cubic graphs.
متن کاملParameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs
We consider the recognition problem for two graph classes that generalize split and unipolar graphs, respectively. First, we consider the recognizability of graphs that admit a monopolar partition: a partition of the vertex set into sets A,B such that G[A] is a disjoint union of cliques and G[B] an independent set. If in such a partition G[A] is a single clique, then G is a split graph. We show...
متن کاملWeighted coloring on planar, bipartite and split graphs: Complexity and approximation
We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-hard in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus on approxi...
متن کاملA PTAS for Minimum Clique Partition in Unit Disk Graphs
We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a polynomial time approximation scheme (PTAS) for this problem on UDG. In fact, we present a robust algorithm that given a graph G (not nece...
متن کاملGraphs vertex-partitionable into strong cliques
A graph is said to be well-covered if all its maximal independent sets are of the same size. In 1999, Yamashita and Kameda introduced a subclass of well-covered graphs, called localizable graphs and defined as graphs having a partition of the vertex set into strong cliques, where a clique in a graph is strong if it intersects all maximal independent sets. Yamashita and Kameda observed that all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 156 شماره
صفحات -
تاریخ انتشار 2008